You Searched For: Plant+Learning+Activities


82,313  results were found

SearchResultCount:"82313"

Sort Results

List View Easy View

Rate These Search Results

Catalog Number: (BOSSBS-3305R-CY7)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-HRP)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-A555)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-8566R-A488)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12401R-A750)
Supplier: Bioss
Description: The Notch Signalling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its Signalling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12401R)
Supplier: Bioss
Description: The Notch signaling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its signaling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11719R-A647)
Supplier: Bioss
Description: Calcyon is a single transmembrane protein that interacts with D1 dopamine receptors. Dopamine is a neurotransmitter that regulates synaptic transmission involved in learning and memory. D1 receptors, the most abundant dopamine receptor in the central nervous system, appear to modulate the activity of D2 dopamine receptors, mediate various behavioural responses, and regulate neuron growth and differentiation. Calcyon is present in neuronal cell bodies and processes of the cortex and hippocampus, and it is especially abundant in pyramidal neurons. Interaction of Calcyon with D1 receptors results in a release of intracellular calcium.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5382R-A750)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-8566R)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12401R-CY7)
Supplier: Bioss
Description: The Notch signaling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its signaling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12401R-FITC)
Supplier: Bioss
Description: The Notch signaling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its signaling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-0175R-A750)
Supplier: Bioss
Description: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerisation, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12401R-A555)
Supplier: Bioss
Description: The Notch signaling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its signaling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12401R-A680)
Supplier: Bioss
Description: The Notch Signalling pathway is an evolutionary conserved system that is involved in intracellular communication. Notch receptors play an important role in development and cell-fate decisions. Notchless is a loss-of-function mutant allele that encodes for protein NLE1 (notchless homolog 1). NLE1 is a 485 amino acid WD40-repeat protein that binds to the cytoplasmic domain of Notch, regulating its Signalling activity in Drosophila melanogaster and in mice. Deletion of the NLE1 gene in mice during the early stages of development results in embryonic death, while gene deletion in the late stages of development leads to activation of a caspase-3-dependent apoptotic pathway. In plants, NLE1 is crucial for normal cellular growth and development. Under-expression during shoot proliferation causes pleiotropic defects such as delayed flowering and abnormal organ maturation. It may also play a role in 60S ribosomal subunit biogenesis in yeast. NLE1 contains eight WD40 domains and produces one isoform due to alternative splicing.
UOM: 1 * 100 µl


Catalog Number: (EDVO339-340)
Supplier: EDVOTEK
Description: Learn the basics of DNA sequencing and sequence homology with this lab activity.
UOM: 1 * 1 SET


Catalog Number: (BOSSBS-11528R-CY3)
Supplier: Bioss
Description: GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 signaling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at eurega_services@eu.vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service on +353 1 8822222.
113 - 128 of 82,313
no targeter for Bottom