You Searched For: Optics+Learning+Activities


80,638  results were found

SearchResultCount:"80638"

Sort Results

List View Easy View

Rate These Search Results

Catalog Number: (BOSSBS-11528R-CY3)
Supplier: Bioss
Description: GALR3 a 368 and 370 amino acid protein in human and rat, respectively, belongs to a family of G protein-coupled receptors that bind the neuropeptide galanin, which is distributed throughout the central and peripheral nervous system, the pituitary gland, the gastrointestinal tract and in the endocrine and exocrine pancreas. GALR3 mRNA is widely distributed, but expressed at low abundance. In human, GALR3 mRNA is highly expressed in the hypothalamus, pituitary and testis, and is expressed to a lesser extent in adrenal gland and pancreas. Rat and human GALR3 co-express with potassium channel subunits GIRK1 and GIRK4. Like GALR1, GALR3 signaling pathways lead to the inhibition of adenylate cyclase and to the activation of potassium channels, which are linked to the regulation of neurotransmitter release. Binding of galanin to galanin receptors results in increased feeding, impaired learning, enhanced opiate analgesia and decreased opiate place preference.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11719R)
Supplier: Bioss
Description: Calcyon is a single transmembrane protein that interacts with D1 dopamine receptors. Dopamine is a neurotransmitter that regulates synaptic transmission involved in learning and memory. D1 receptors, the most abundant dopamine receptor in the central nervous system, appear to modulate the activity of D2 dopamine receptors, mediate various behavioural responses, and regulate neuron growth and differentiation. Calcyon is present in neuronal cell bodies and processes of the cortex and hippocampus, and it is especially abundant in pyramidal neurons. Interaction of Calcyon with D1 receptors results in a release of intracellular calcium.
UOM: 1 * 100 µl


New Transparency for European Customers

Have you noticed our new improved visibility on stock location at checkout?

Find out more

Enhancement to stock locations

Catalog Number: (BOSSBS-8566R-A350)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5382R-FITC)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5382R-A647)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5382R-A488)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-13390R-A680)
Supplier: Bioss
Description: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5382R-A680)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-8566R-A680)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-8566R-A488)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-A488)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-CY7)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-HRP)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-A555)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R-FITC)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-13390R-A647)
Supplier: Bioss
Description: GLUD2 is both mitochondrial matrix enzymes belonging to the Glu/Leu/Phe/Val dehydrogenases family. Exisiting as homohexamers, GLUD1 catalyzes the oxidative deamination of glutamate to ?ketoglutarate and ammonia while GLUD2 is involved in the recycling of glutamate during neurotransmission. GLUD1 is critical for regulating amino acid induced insulin secretion and is allosterically activated by ADP and inhibited by GTP and ATP. Mutations in the gene encoding GLUD1 causes hyperinsulinism-hyperammonemia syndrome (HHS), which is an inherited condition characterized by high insulin and ammonia levels in the blood. GLUD1 may also be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate. GLUD2 is expressed in testis and retina, with lower levels found in brain.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at eurega_services@eu.vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service on +353 1 8822222.
65 - 80 of 80,638
no targeter for Bottom