You Searched For: Genetics+Learning+Activities


83,287  results were found

SearchResultCount:"83287"

Sort Results

List View Easy View

Rate These Search Results

Catalog Number: (BOSSBS-5124R-A488)
Supplier: Bioss
Description: HSPC300 (hematopoietic stem cell protein 300) is also known as probable protein BRICK1 or C3orf10 (chromosome 3 open reading frame 10) and is a 75 amino acid protein that is expressed as two isoforms and localizes to both the cytoplasm and the cytoskeleton. HSPC300 is thought to regulate cytoskeletal organization and Actin polymerization. Free HSPC300 exists as homotrimers prior to its incorporation into the WAVE complex. The WAVE complex includes five proteins, one of which is HSPC300, that regulate the ARC (Arp2/3 complex) which is responsible for Actin nucleation and is Rac 1-dependent. Because HSPC300 is a highly conserved subunit of the WAVE complex across many species, it is thought to have the same or similar functions in many different organisms. In Drosophila, the WAVE/ARC pathway may affect the development of the nervous system. HSPC300 is thought to localize to axons of the central nervous system of Drosophila embryos and thus may also be involved in axonogenesis. In addition, HSPC300 is thought to be necessary for synaptic morphogenesis by motoneurons. In mice, the knockout of the WAVE complex leads to learning and memory defects, and it is therefore hypothesized that HSPC300 may also be involved in cognitive functions. Genetic depletion of HSPC300 results in cytoskeletal abnormalities and prevents cytokinesis of cells, suggesting that decreased levels of HSPC300 may be associated with tumor suppression.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5124R-CY5.5)
Supplier: Bioss
Description: HSPC300 (hematopoietic stem cell protein 300) is also known as probable protein BRICK1 or C3orf10 (chromosome 3 open reading frame 10) and is a 75 amino acid protein that is expressed as two isoforms and localizes to both the cytoplasm and the cytoskeleton. HSPC300 is thought to regulate cytoskeletal organization and Actin polymerization. Free HSPC300 exists as homotrimers prior to its incorporation into the WAVE complex. The WAVE complex includes five proteins, one of which is HSPC300, that regulate the ARC (Arp2/3 complex) which is responsible for Actin nucleation and is Rac 1-dependent. Because HSPC300 is a highly conserved subunit of the WAVE complex across many species, it is thought to have the same or similar functions in many different organisms. In Drosophila, the WAVE/ARC pathway may affect the development of the nervous system. HSPC300 is thought to localize to axons of the central nervous system of Drosophila embryos and thus may also be involved in axonogenesis. In addition, HSPC300 is thought to be necessary for synaptic morphogenesis by motoneurons. In mice, the knockout of the WAVE complex leads to learning and memory defects, and it is therefore hypothesized that HSPC300 may also be involved in cognitive functions. Genetic depletion of HSPC300 results in cytoskeletal abnormalities and prevents cytokinesis of cells, suggesting that decreased levels of HSPC300 may be associated with tumor suppression.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5124R-CY5)
Supplier: Bioss
Description: HSPC300 (hematopoietic stem cell protein 300) is also known as probable protein BRICK1 or C3orf10 (chromosome 3 open reading frame 10) and is a 75 amino acid protein that is expressed as two isoforms and localizes to both the cytoplasm and the cytoskeleton. HSPC300 is thought to regulate cytoskeletal organization and Actin polymerization. Free HSPC300 exists as homotrimers prior to its incorporation into the WAVE complex. The WAVE complex includes five proteins, one of which is HSPC300, that regulate the ARC (Arp2/3 complex) which is responsible for Actin nucleation and is Rac 1-dependent. Because HSPC300 is a highly conserved subunit of the WAVE complex across many species, it is thought to have the same or similar functions in many different organisms. In Drosophila, the WAVE/ARC pathway may affect the development of the nervous system. HSPC300 is thought to localize to axons of the central nervous system of Drosophila embryos and thus may also be involved in axonogenesis. In addition, HSPC300 is thought to be necessary for synaptic morphogenesis by motoneurons. In mice, the knockout of the WAVE complex leads to learning and memory defects, and it is therefore hypothesized that HSPC300 may also be involved in cognitive functions. Genetic depletion of HSPC300 results in cytoskeletal abnormalities and prevents cytokinesis of cells, suggesting that decreased levels of HSPC300 may be associated with tumor suppression.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5124R-FITC)
Supplier: Bioss
Description: HSPC300 (hematopoietic stem cell protein 300) is also known as probable protein BRICK1 or C3orf10 (chromosome 3 open reading frame 10) and is a 75 amino acid protein that is expressed as two isoforms and localizes to both the cytoplasm and the cytoskeleton. HSPC300 is thought to regulate cytoskeletal organization and Actin polymerization. Free HSPC300 exists as homotrimers prior to its incorporation into the WAVE complex. The WAVE complex includes five proteins, one of which is HSPC300, that regulate the ARC (Arp2/3 complex) which is responsible for Actin nucleation and is Rac 1-dependent. Because HSPC300 is a highly conserved subunit of the WAVE complex across many species, it is thought to have the same or similar functions in many different organisms. In Drosophila, the WAVE/ARC pathway may affect the development of the nervous system. HSPC300 is thought to localize to axons of the central nervous system of Drosophila embryos and thus may also be involved in axonogenesis. In addition, HSPC300 is thought to be necessary for synaptic morphogenesis by motoneurons. In mice, the knockout of the WAVE complex leads to learning and memory defects, and it is therefore hypothesized that HSPC300 may also be involved in cognitive functions. Genetic depletion of HSPC300 results in cytoskeletal abnormalities and prevents cytokinesis of cells, suggesting that decreased levels of HSPC300 may be associated with tumor suppression.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5124R-A680)
Supplier: Bioss
Description: HSPC300 (hematopoietic stem cell protein 300) is also known as probable protein BRICK1 or C3orf10 (chromosome 3 open reading frame 10) and is a 75 amino acid protein that is expressed as two isoforms and localises to both the cytoplasm and the cytoskeleton. HSPC300 is thought to regulate cytoskeletal organisation and Actin polymerization. Free HSPC300 exists as homotrimers prior to its incorporation into the WAVE complex. The WAVE complex includes five proteins, one of which is HSPC300, that regulate the ARC (Arp2/3 complex) which is responsible for Actin nucleation and is Rac 1-dependent. Because HSPC300 is a highly conserved subunit of the WAVE complex across many species, it is thought to have the same or similar functions in many different organisms. In Drosophila, the WAVE/ARC pathway may affect the development of the nervous system. HSPC300 is thought to localise to axons of the central nervous system of Drosophila embryos and thus may also be involved in axonogenesis. In addition, HSPC300 is thought to be necessary for synaptic morphogenesis by motoneurons. In mice, the knockout of the WAVE complex leads to learning and memory defects, and it is therefore hypothesized that HSPC300 may also be involved in cognitive functions. Genetic depletion of HSPC300 results in cytoskeletal abnormalities and prevents cytokinesis of cells, suggesting that decreased levels of HSPC300 may be associated with tumor suppression.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5124R-A750)
Supplier: Bioss
Description: HSPC300 (hematopoietic stem cell protein 300) is also known as probable protein BRICK1 or C3orf10 (chromosome 3 open reading frame 10) and is a 75 amino acid protein that is expressed as two isoforms and localises to both the cytoplasm and the cytoskeleton. HSPC300 is thought to regulate cytoskeletal organisation and Actin polymerization. Free HSPC300 exists as homotrimers prior to its incorporation into the WAVE complex. The WAVE complex includes five proteins, one of which is HSPC300, that regulate the ARC (Arp2/3 complex) which is responsible for Actin nucleation and is Rac 1-dependent. Because HSPC300 is a highly conserved subunit of the WAVE complex across many species, it is thought to have the same or similar functions in many different organisms. In Drosophila, the WAVE/ARC pathway may affect the development of the nervous system. HSPC300 is thought to localise to axons of the central nervous system of Drosophila embryos and thus may also be involved in axonogenesis. In addition, HSPC300 is thought to be necessary for synaptic morphogenesis by motoneurons. In mice, the knockout of the WAVE complex leads to learning and memory defects, and it is therefore hypothesized that HSPC300 may also be involved in cognitive functions. Genetic depletion of HSPC300 results in cytoskeletal abnormalities and prevents cytokinesis of cells, suggesting that decreased levels of HSPC300 may be associated with tumor suppression.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5124R-HRP)
Supplier: Bioss
Description: HSPC300 (hematopoietic stem cell protein 300) is also known as probable protein BRICK1 or C3orf10 (chromosome 3 open reading frame 10) and is a 75 amino acid protein that is expressed as two isoforms and localizes to both the cytoplasm and the cytoskeleton. HSPC300 is thought to regulate cytoskeletal organization and Actin polymerization. Free HSPC300 exists as homotrimers prior to its incorporation into the WAVE complex. The WAVE complex includes five proteins, one of which is HSPC300, that regulate the ARC (Arp2/3 complex) which is responsible for Actin nucleation and is Rac 1-dependent. Because HSPC300 is a highly conserved subunit of the WAVE complex across many species, it is thought to have the same or similar functions in many different organisms. In Drosophila, the WAVE/ARC pathway may affect the development of the nervous system. HSPC300 is thought to localize to axons of the central nervous system of Drosophila embryos and thus may also be involved in axonogenesis. In addition, HSPC300 is thought to be necessary for synaptic morphogenesis by motoneurons. In mice, the knockout of the WAVE complex leads to learning and memory defects, and it is therefore hypothesized that HSPC300 may also be involved in cognitive functions. Genetic depletion of HSPC300 results in cytoskeletal abnormalities and prevents cytokinesis of cells, suggesting that decreased levels of HSPC300 may be associated with tumor suppression.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5124R-CY7)
Supplier: Bioss
Description: HSPC300 (hematopoietic stem cell protein 300) is also known as probable protein BRICK1 or C3orf10 (chromosome 3 open reading frame 10) and is a 75 amino acid protein that is expressed as two isoforms and localizes to both the cytoplasm and the cytoskeleton. HSPC300 is thought to regulate cytoskeletal organization and Actin polymerization. Free HSPC300 exists as homotrimers prior to its incorporation into the WAVE complex. The WAVE complex includes five proteins, one of which is HSPC300, that regulate the ARC (Arp2/3 complex) which is responsible for Actin nucleation and is Rac 1-dependent. Because HSPC300 is a highly conserved subunit of the WAVE complex across many species, it is thought to have the same or similar functions in many different organisms. In Drosophila, the WAVE/ARC pathway may affect the development of the nervous system. HSPC300 is thought to localize to axons of the central nervous system of Drosophila embryos and thus may also be involved in axonogenesis. In addition, HSPC300 is thought to be necessary for synaptic morphogenesis by motoneurons. In mice, the knockout of the WAVE complex leads to learning and memory defects, and it is therefore hypothesized that HSPC300 may also be involved in cognitive functions. Genetic depletion of HSPC300 results in cytoskeletal abnormalities and prevents cytokinesis of cells, suggesting that decreased levels of HSPC300 may be associated with tumor suppression.
UOM: 1 * 100 µl


Catalog Number: (RDBT002015)
Supplier: VWR Chemicals
Description: Plain borosilicate tubes for insertion of a wire electrode so that the electrode is insulated from the clamp or holder and protected from mechanical damage. The tube also helps the flexible wire electrode be positioned correctly in a rigid support.
UOM: 1 * 100 items


Supplier: Copan
Description: <p>DNA collection for human identification. The active drying system absorbs water molecules, preventing microbial growth and guaranteeing DNA stability for 12+ months at RT and –80 °C.</p>

Catalog Number: (BE-502)
Supplier: G-Biosciences
Description: Dot blotting is a simple technique to identify a known protein in a biological sample. The ease and simplicity of the technique makes dot blotting an ideal diagnostic tool.
UOM: 1 * 1 KIT


Catalog Number: (201-0216)
Supplier: GLASWARENFABRIK KARL HECHT
Description: Five communicating glass tubes with different inner diameters. Used to show capillary forces and how they are affected by the inner diameter of the pipes.
UOM: 1 * 1 items


Catalog Number: (765-0969)
Supplier: GLASWARENFABRIK KARL HECHT
Description: Five glass tubes of different shape and inner dimensions. Down to each other. When filling the liquid in the pipes, it is clear that the height of the stowage in the tubes. pipes are independent of the design of the pipes. Comes with foot.
UOM: 1 * 1 items


Catalog Number: (BE-404)
Supplier: G-Biosciences
Description: This lab activity is designed to demonstrate the different classes of protein molecules and their classification based on solubility. Students learn fractionation of soluble, insoluble membrane proteins, and cytoskeleton proteins from a tissue sample. The insoluble protein fraction is further fractionated into hydrophilic and hydrophobic membrane proteins. Cell membrane structure and the role of hydrophobic membrane proteins are considered. This lab activity also provides an opportunity to understand characteristics of various classes of detergents and the role of detergents in solubilisation of hydrophobic membrane proteins.
UOM: 1 * 1 KIT


Catalog Number: (BOSSBS-13204R-CY5)
Supplier: Bioss
Description: Transcriptional regulator. Critical factor essential for ovary differentiation and maintenance, and repression of the genetic program for somatic testis determination. Prevents trans-differentiation of ovary to testis throught transcriptional repression of the Sertoli cell-promoting gene SOX9 (By similarity). Has apoptotic activity in ovarian cells. Suppresses ESR1-mediated transcription of PTGS2/COX2 stimulated by tamoxifen (By similarity). Is a regulator of CYP19 expression (By similarity). Participates in SMAD3-dependent transcription of FST via the intronic SMAD-binding element (By similarity). Is a transcriptional repressor of STAR. Activates SIRT1 transcription under cellular stress conditions. Activates transcription of OSR2.
UOM: 1 * 100 µl


Supplier: Avantor
Description: J.T.Baker® Endonuclease Biotech Reagent meets the strictest cGMP standards and is designed for the degradation of both single stranded and double stranded DNA and RNA. J.T.Baker® Endonuclease Biotech Reagent is used to ensure host cell DNA impurities are removed; driving process efficiency by lowering viscosity and preventing aggregation. J.T.Baker® Endonuclease Biotech Reagent is an enzyme based upon the native endonuclease of Serratia marcescens, enabling rapid clearance of residual DNA and RNA during the production and purification of both recombinant proteins and viral vectors. Non-animal origin. Absence of proteolytic activity. The purity of materials in non-negotiable. J.T.Baker® Endonuclease Biotech Reagent acts to degrade and eliminate extraneous genetic material, ensuring the pristine quality of your final product.
Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at eurega_services@eu.vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service on +353 1 8822222.
49 - 64 of 83,287
no targeter for Bottom