You Searched For: Genetics+Learning+Activities


83,286  results were found

SearchResultCount:"83286"

Sort Results

List View Easy View

Rate These Search Results

Catalog Number: (BOSSBS-11719R-HRP)
Supplier: Bioss
Description: Calcyon is a single transmembrane protein that interacts with D1 dopamine receptors. Dopamine is a neurotransmitter that regulates synaptic transmission involved in learning and memory. D1 receptors, the most abundant dopamine receptor in the central nervous system, appear to modulate the activity of D2 dopamine receptors, mediate various behavioural responses, and regulate neuron growth and differentiation. Calcyon is present in neuronal cell bodies and processes of the cortex and hippocampus, and it is especially abundant in pyramidal neurons. Interaction of Calcyon with D1 receptors results in a release of intracellular calcium.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-A680)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-CY5.5)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-8566R-CY5.5)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-7952R-A680)
Supplier: Bioss
Description: ADCK2 (aarF domain containing kinase 2), also known as AARF, is a 626 amino acid single-pass membrane protein belonging to the protein kinase superfamily and the ADCK protein kinase family. The ADCK family consists of five paralogs in human (ADCK1-5). Encoded by a gene that maps to human chromosome 7q34, ADCK2 contains one protein kinase domain. ADCK2 participates in ATP and nucleotide binding, transferase functions and protein serine/threonine kinase activities. Expression of ADCK2 inversely correlates with cellular viability, suggesting elevated expression of ADCK2 may be essential for tumour survival. ADCK2 is necessary for cell proliferation of glioblastoma multiforme (GBM), a fatal primary brain tumor containing countless genetic and epigenetic alterations.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-7952R-A350)
Supplier: Bioss
Description: ADCK2 (aarF domain containing kinase 2), also known as AARF, is a 626 amino acid single-pass membrane protein belonging to the protein kinase superfamily and the ADCK protein kinase family. The ADCK family consists of five paralogs in human (ADCK1-5). Encoded by a gene that maps to human chromosome 7q34, ADCK2 contains one protein kinase domain. ADCK2 participates in ATP and nucleotide binding, transferase functions and protein serine/threonine kinase activities. Expression of ADCK2 inversely correlates with cellular viability, suggesting elevated expression of ADCK2 may be essential for tumour survival. ADCK2 is necessary for cell proliferation of glioblastoma multiforme (GBM), a fatal primary brain tumor containing countless genetic and epigenetic alterations.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-7952R)
Supplier: Bioss
Description: ADCK2 (aarF domain containing kinase 2), also known as AARF, is a 626 amino acid single-pass membrane protein belonging to the protein kinase superfamily and the ADCK protein kinase family. The ADCK family consists of five paralogs in human (ADCK1-5). Encoded by a gene that maps to human chromosome 7q34, ADCK2 contains one protein kinase domain. ADCK2 participates in ATP and nucleotide binding, transferase functions and protein serine/threonine kinase activities. Expression of ADCK2 inversely correlates with cellular viability, suggesting elevated expression of ADCK2 may be essential for tumour survival. ADCK2 is necessary for cell proliferation of glioblastoma multiforme (GBM), a fatal primary brain tumor containing countless genetic and epigenetic alterations.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11719R-A750)
Supplier: Bioss
Description: Calcyon is a single transmembrane protein that interacts with D1 dopamine receptors. Dopamine is a neurotransmitter that regulates synaptic transmission involved in learning and memory. D1 receptors, the most abundant dopamine receptor in the central nervous system, appear to modulate the activity of D2 dopamine receptors, mediate various behavioural responses, and regulate neuron growth and differentiation. Calcyon is present in neuronal cell bodies and processes of the cortex and hippocampus, and it is especially abundant in pyramidal neurons. Interaction of Calcyon with D1 receptors results in a release of intracellular calcium.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9500R-CY7)
Supplier: Bioss
Description: Hemostasis following tissue injury involves the deployment of essential plasma procoagulants (prothrombin, and factors X, IX, V, and VIII), which are involved in a blood coagulation cascade that leads to the formation of insoluble fibrin clots and the promotion of platelet aggregation (1-3). Coagulation factor IX (plasma thromboplastic component, F9, F.IX, HEMB) is a vitamin K-dependent, single chain serine protease that is synthesized in the liver and circulates as an inactive precursor (3,4). Factor XIa mediated proteolytic cleavage of factor IX generates factor IXa, an active serine protease composed of a 145 amino acid light chain and a 236 amino acid catalytic heavy chain, linked through disulfide bonds (5). Genetic alterations at the Factor IX locus such as point mutations, insertions and deletions, can lead to hemophilia B, also known as Christmas disease (6).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-A750)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5382R-CY5.5)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-8566R-CY5)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-8566R-FITC)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate receptors. NMDA receptor channel has been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of three different subunits: NR1 (GRIN1), NR2 (GRIN2A, GRIN2B, GRIN2C, or GRIN2D) and NR3 (GRIN3A or GRIN3B). The NR2 subunit acts as the agonist binding site for glutamate. This receptor is the predominant excitatory neurotransmitter receptor in the mammalian brain. [provided by RefSeq, Jul 2008].
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-3305R-A350)
Supplier: Bioss
Description: N-methyl-D-aspartate (NMDA) receptors are a class of ionotropic glutamate-gated ion channels. These receptors have been shown to be involved in long-term potentiation, an activity-dependent increase in the efficiency of synaptic transmission thought to underlie certain kinds of memory and learning. NMDA receptor channels are heteromers composed of the key receptor subunit NMDAR1 (GRIN1) and 1 or more of the 4 NMDAR2 subunits: NMDAR2A (GRIN2A), NMDAR2B (GRIN2B), NMDAR2C (GRIN2C) and NMDAR2D (GRIN2D). Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-13185R-A680)
Supplier: Bioss
Description: The temporal genetic hierarchy influencing normal limb development can deregulate and mediate mammalian developmental syndromes. In mice, the limb deformity (ld) locus influences normal limb development and gives rise to alternative mRNAs that can translate into a family of proteins known as formins. Formins play a crucial role in cytoskeletal reorganization by influencing Actin filament assembly. Formins co-localize with the actin cytoskeleton and can translocate into the cell cytosol and into the nucleus in an HGF-dependent manner. Vertebrate nuclear formins can control polarizing activity in limb buds through establishment of a Sonic hedgehog/FGF-4 feedback loop. Deficiency mutations at the mammalian ld locus lead to profound developmental defects in limb and kidney formation. The human Formin 1 and 2 genes map to chromosome 15q13.3 and 1q43, respectively.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-13185R-A350)
Supplier: Bioss
Description: The temporal genetic hierarchy influencing normal limb development can deregulate and mediate mammalian developmental syndromes. In mice, the limb deformity (ld) locus influences normal limb development and gives rise to alternative mRNAs that can translate into a family of proteins known as formins. Formins play a crucial role in cytoskeletal reorganization by influencing Actin filament assembly. Formins co-localize with the actin cytoskeleton and can translocate into the cell cytosol and into the nucleus in an HGF-dependent manner. Vertebrate nuclear formins can control polarizing activity in limb buds through establishment of a Sonic hedgehog/FGF-4 feedback loop. Deficiency mutations at the mammalian ld locus lead to profound developmental defects in limb and kidney formation. The human Formin 1 and 2 genes map to chromosome 15q13.3 and 1q43, respectively.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on +353 1 88 22222
This product is marked as restricted and can only be purchased by approved Shipping Accounts. If you need further assistance, email VWR Regulatory Department at eurega_services@eu.vwr.com
-Additional Documentation May be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service on +353 1 8822222.
305 - 320 of 83,286
no targeter for Bottom